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Quasi-periodicity with two periods we call bi-periodicity. We examine bi-periodic solutions 
of bi-periodically forced dissipative systems. The systems are described either by ordinary dif- 
ferential equations or by difference equations (iterated maps). When the ratio between the two 
periods is irrational or rational with many terms in its continued fraction expansion we can 
find the bi-periodic solution as a lixed point of a Poincark map. The Poincark map used to 
study bi-periodic solutions is a generalization of the Poincark map used to study periodic 
solutions. We study a linear difference equation where the exact solution is known. Next we 
study a non-linear ordinary differential equation of the Dulling type, where we perform a con- 
tinuation in the coefficient of the cubic term. % 1986 Academic Press, Inc. 

INTRODUCTION 

We consider dynamical systems which are forced b&periodically. The dynamics is 
assumed to be governed either by ordinary differential equations (ODES) or dif- 
ference equations (also called iterated maps (IMs)); thus 

dx/dt = i = f( t, t, x), t>O, XER”, n>,l 

or 

x(t+l)=i=f(t, t,x), t=O, 1,2 ,..., XER”, n2l 

where f is known, and 

f:R+xR,xR”-tR” 

f(O+ T, 8’,x)= f(t), O',x) 

for all 8, 8’ and x; T and T’ are known periods. Thus f is bi-periodic. We assume f 
to be smooth. We assume the system to be dissipative, and to have a bi-periodic 
orbit; thus 

x = b(t, t), O<t 
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where 
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b:R+xR,+R” 

b(8 + T, 0’) = b(8, 8’ + T’) = b(8, 0’) for all 8, 8’ 

is a solution of the governing equations. 
We note, that b(0, z) is a periodic function with period T’. We define a Poincare 

map P which has b(0, 0) as a fixed point [6, lo]. In order to obtain b(0, 5) we 
observe b(t, t) at times t = 0, T, 2T, 3T,... and take r = t modulo T’. Among all these 
points it turns out, that we only need a subset with t values close to 0 or T’. That 
subset of points must have observation times close to the second period T’. These 
times can be determined from the continued fraction expansion of the ratio T/T’, 
the so-called winding number. The stability of the fixed point defined in this way, 
can be determined from the eigenvalues of the derivative of the Poincare map DP in 
that fixed point. 

The theory of linear difference equations is similar to the theory of linear 
ordinary differential equations. This is demonstrated in [2]. We stress this 
similarity by denoting the discrete times 0, 1, 2, 3,... with t, as well as by introducing 
the symbol ( ‘): f denotes the x vector one time step later. 

Numerical solution methods for ODES are based on difference equations [7]. 
Thus an ODE-solver transforms the dynamical system continuous in time into a 
dynamical system discrete in time. 

The literature on bi-periodically forced ODES is large. In [ 1, 3, lo] an 
approximation to the bi-periodic solution is performed using a generalized Fourier 
series. There the problem of small denominators arise. It turns out that our method 
does not have small denominators. In [ 111 perturbation methods are applied to 
multifrequency excitations of ODES. On the other hand, the literature on 
bi-periodically forced iterated maps is sparse. In [ 121 a linear system of ODES 
forced with Dirac delta functions have been reformulated as an iterated map. 

The method discussed here was first announced in [S]. However, in that paper 
the following two questions were only vaguely answered: 

(i) When can we define a Poincare map? 
(ii) How accurately can we compute the fixed point of the Poincare map? 

The answer to (i) is, that a Poincare map can be defined when the ratio T/T’ is 
irrational, or rational with a long continued fraction expansion. In order to answer 
(ii) we consider systems where the exact soiution is known, and we use the 
algorithms in [4]. 

Bi-periodic solutions of both periodically forced systems of ODES and IMs have 
been reported in [9]. The difficulty in these cases is T’ is unknown. Bi-periodic 
solutions of autonomous ODES were also studied in [9]; in that case both T and 
T’ are unknown. 

With two examples we demonstrate the application of the theory; an IM with 
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known solution, and an ODE where the solution is known for one value of the 
parameter. This paper is computational in spirit, and our statements are based on 
numerical evidence. 

THE METHOD 

The system of ordinary differential equations 

1 =f(t, t, xl, 40) =x0, XER”, 06t 

defines an orbit 0(x,) described by the solution curve &t; x0), 0 < t, where 
ek x0) = x0. Similarly the system of iterated maps 

i =f(t, t, xl, 40) =x0, XE R”, t = 0, 1, 2,... 

defines an orbit 0(x,) starting in x0. 
The right-hand sides are bi-periodic functions, thus 

f:R,xR+xR”+R”, 

f( 8 + T, e’, X) = f( 8, 8’ + T’, X) = f( 8, e’, X) for all 8, 81. 

We assume 0 < T < T’. This can be assumed without loss of generality in the ODES. 
However, for the IMs, T must be an integer and we may then take kT’, an integer 
multiple of T’, for the second period to satisfy 0 < T < kT’. 

We assume that the systems have a bi-periodic orbit described by b(t, t), 
b(0, 0) = xb. Thus 

h:R+xR++R”, 

4(c Xb) = wt, t) with ~$(0; xh) = b(0, 0) = xb 

b(e + T, et) = b(e, 8’ + T’) = b(e, ey, 0 < T < T’ for all 8, 0’. 

For a moment, let us assume we know the solution x,,. If we look on the solution 
4 at times T, 2T, 3T ,..., jT ,... we have 

qS(jr xb) = b( jT, jT) = b(0, jT) = b(0, j. (T/T’). T’). 

We define the winding number w = T/T’, 0 < w < 1. Then 

d( jT; xb) = b(0, jw . T’). 

Since b(0, * ) is periodic with period T’, then we instead of writing jw can write zj, 
where rj is jw reduced to some interval of length one; we have used the interval 
[ -+, f[. If we let ROUND(jw) be the integer closest to jw, then we have 

zj = jw - ROUND( jw) 
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and so 
t#l(jT; x/J = b(0, T/’ T’). 

Let J be a set of integers (which we determine in the next section), such that ti, 
Jo J are in a small interval around zero. We interpolate between the points 
d(jT; xb) parameterized by z,, where Jo J. We can then evaluate the interpolating 
curve in r = 0. Within computing accuracy the interpolating curve is in the point x,,. 

The procedure above can be applied to the situation where x0 is in some 
neighbourhood of xb. Interpolation between the points d(jT; x,), Jo J yields the 
point p E R”. We define q = p - x0, and denote it the residual vector. 

We now define the residual map Q which to any input x0 yields the output q, i.e., 

Q: R” -+ R”, Q(xcJ = 4, 

The bi-periodic solution x,, is then a zero point of the residual map. 
We also define the Poincare map P: 

P: R” -+ R”, P(x,) = P. 

The bi-periodic solution xb is a fixed point of P. The Poincare map defined here is a 
generalization of the Poincart map or return map used in the study of periodic 
solutions [lo]. The linearized stability of the bi-periodic solution is equivalent to 
the linearized stability of the fixed point of P. 

The set of points Z(x,) = (#(jr; x0) E R”: j= 0, 1, 2,...} is denoted the strobed 
orbit, and each point is denoted a strobe. We have X(x,) c 0(x,). On the 
bi-periodic solution Z(x,) is a point set on a closed curve (T. If w is irrational, then 
.X(x,) is dense on C. If w is rational with a long continued fraction expansion, then 
the points C(x,) are sufficiently close for our use; c may cross itself in double points 
and is therefore not invariant. 

THE WINDING NUMBER 

We define the winding number as the ratio between the two periods 

w = T/T’, O<w<l. 

The continued fraction expansion of w is written [ 1, 5, lo] 

w= [w,, W2, w3 )... ] = 1 i( 1 
WI +- 

w,+ .” > 

where wi are positive numbers. When this expansion is truncated at wk then we 
obtain the rational numbers 

rk/Sk = Cwl, w2,-, ~~1, k = 1, 2, 3 ,..., 
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which we denote the successive convergents to w [ 51. The numbers can be com- 
puted recursively by 

rk=wk ‘rk-l+rk-2? k = 2, 3,..., 

sk=wk.sk-l+sk-2, k = 2, 3,..., 

with r1 = 1, r. = 0, sr = wr, s0 = 1. The sequence of successive convergents alternate 
about w and converges to w [lo]. Thus the distances 

dk=skw-rrk, k = 1, 2, 3,... 

alternate about zero and converge to zero. 
For any w we can determine a sequence of numbers n,, I= 1,2, 3,... such that 

6,<0<6,+w 

i?,=n,. W-I, I= 1, 2, 3 )... 

When dk is positive for a chosen sk, let us find an n, for which - $ < 6, < 0, and 
let m satisfy 0 < 6, + md, < 4. Then the set of integers 

J= { n[, n/ + Sk,..., n[ + msk} 

leads to a set of strobes S c C(x,), 

s= {qqjT;x,)ER”:jEJ} 

which can be parameterized by rj, Jo J. The point on the interpolating curve at 
t = 0 we denote p, p E R”. 

When dk is negative for a chosen sk, let us find an n, for which 0 < 6, + w < f, and 
let m satisfy -1~ 6, + w + md, < 0. Then the set 

can be used to obtain a set of strobes. 
If the continued fraction of w breaks off after a certain wk, then w = rk/sk. We 

may either use J= {Sk}-and thus study the bi-periodic solution as a periodic 
solution with period sk T-or we can determine a set J by the procedure above. 

The computational work is essentially equal to the work in computing &jT; x0) 
where j = max J. If therefore 1 + wk for a certain k, then Sk- r $s, and since the set J 
is based on sk, the elements of J may become too large for practical computations. 
A large wk means that the rational number rk/sk is very close to w. We want small 
VdUeS of wk to have flexibility in the definition of J. Therefore the Slower rk/sk con- 
verge to w, the easier we may find J. The slowest convergence of rk/sk will take 
place for the winding number [ 1, 1, I,...] = 2/($ - 1) = the golden mean inverse, 
where the successive convergents are ratios of the Fibonacci numbers 1, 1, 2, 3, 5, 
8,... each being the sum of its two predecessors. 
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NUMERICAL DETAILS 

The interpolation was done with cubic splines. We used the IMSL-routines 
ICSCCU to set up the interpolating curve, and ICSEVU to evaluate the curve at 
T = 0. 

The accuracy of the values of Q was determined with the algorithm in [4]. We 
called x0 a zero point of Q when the norm of Q(x,) was below that accuracy. Then 
the initial condition on the bi-periodic solution is xb = x,,. 

The zero of the residual map Q was found with Newton-Raphson’s method. The 
derivative Z)Q was approximated with forward differences. The steplength in the dif- 
ference was found with the algorithm in [4]. 

The stability of the fixed point xb of P was determined from the eigenvalues of 
DP(x,) = (DQ + Z)(xb). When all eigenvalues are inside the unit circle in the com- 
plex plane, the fixed point is stable. The eigenvalues Ai of DP depend on the values 
of (nl, sk, m). However, if I&( < 1 for one set (n /, s k, m) then lli will be inside the 
unit circle for any other (n,, sk, m)-set. Similarly for [Ai] > 1. 

The governing system of equations may depend on a control parameter. Thus for 
the ODES we have 

i=f(t, t, x; c), c E R. 

Then the zero point xb of the residual map depends on c. The path of zeros is 
implicitly defined and can be followed from any given point on the path. This will 
be demonstrated in the example with Dufting’s equation. 

AN EXAMPLE WITH AN ITERATED MAP 

We shall study the linear difference equation 

ii + ti + $4 = cos(J5 nt), 

i=u(t+2), zi=u(t+ l), u = u(t), t = 0, 1, 2 )... . 

We use the substitution xi = a, x2 = ti, and obtain the IM 

fl=Xz 

f, = -x2 - ;xxl + cos(Jz a). 

The determinant of the jacobian of the right hand side is i, thus the system is dis- 
sipative. 

We see, that T= 1 and T’ = fi, thus the winding number is w = l/d with the 
continued fraction expansion w = [ 1,2,2, 2,...]. We choose k = 6 for which rk = 70, 
sk=99, such that dk=3.57133*10P3. Then we fix I=29 for which n,=41 and 
6,= -8.62197 * 10P3. With m = 4 we have .Z= (41, 140, 239, 338, 437). When the 
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FIG. 1. Steady state solution of the difference equation ii + li + iu = cos(tn &). The initial condition 
at I = 0 is (u. ti) = (- 1.09085 67897 37628, 1.55572 71067 22602). The r axis is r = r/T’ module 1, t = 0, 
1, 2 ,..., 500, and T’ = &. 

norm of the residual map Q was below lop9 we stopped the Newton scheme. We 
found the zero point of Q to be 

x1 = u(O) = -1.09085 67897 37628 

x2 = l;(O) = 1.55572 71067 22602. 

The eigenvalues of DP = DQ + I in this point were inside the unit circle. Thus the 
bi-periodic solution is stable. A picture of the solution is seen in Fig. 1. 

The difference equation can be solved exactly [2]. The solution is u(t) = A( - $ + 
i(&2))' + B( - f - i($/2))' + C cos(j'z nt) + D sin(& nt). Here i = fi; A 
and B are arbitrary real constants, whereas C and D are the solutions of the 2 x 2 
system 

cr=cos(27L ,lri)+cos(x a,+:, 

/I = sin(27r Jz) + sin(n 3). 

The solution is bi-periodic when A = B = 0, and because I- 4 + i($!/2)1 < 1 the 
solution is stable. We have 

u(0) = c = -1.09085 67916 34538 

$0) = C cos(,,h TT) + D sin(J?; rc) = 1.55572 71093 23350, 

which compares very well with our computations above. 
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AN EXAMPLE WITH AN ORDINARY DIFFERENTIAL EQUATION 

We shall study an equation of Dulling’s type 

2 + 0.05i + x + cx3 = 0.3 cos t + 1.5 c0s(0.115t), 

where c is a control parameter. The case c = 1 was examined in [S] originally due 
to Chua and Ushida [3]. The case c = 0 can be solved exactly. The transient is 
damped, and the steady state solution is 

x(t)=6sin t+A cos(0.115t)+Bsin(O.l15t), t > 0. 

This solution is bi-periodic, and A and B are the solutions of the 2 x 2 system 

We obtain 
x(0) = A = 1.52005 17541 85237 

i(0) = 6 + 0.115B = 6.00101 86052 77247. 

We use the substitution y, =x, y, = ++ and obtain the system 

PI =Y2 

$2 = -o.o5y, - y, - cy: + 0.3 cos t + 1.5 c0s(0.115t). 

The divergence of the right-hand side is -0.05, thus the system is dissipative. The 
two periods are T= 2x and T’ = 2n/0.115. Therefore the winding number is 
w = 0.115, whose continued fraction expansion is [S, 1,2, 3,2]. The successive con- 
vergents are $, 4, A, $ and $-,. From this we see, that the right-hand side is periodic 
with period 200 * 271. We choose k = 2 and I= 3 such that sk = 9 and n, = 17. With 
m = 3 we then obtain J= { 17,26,35,44}. 

We have performed a continuation in the parameter c. The initial values for the 
bi-periodic solutions are given in Table I. The corresponding strobed orbits can be 
seen in Fig. 2. The influence of the cubic non-linearity is seen to be very strong. In 
all cases the solutions are stable. 

We used the IMSL-routine DVERK to solve the ODES with a local error 
tolerance of lOmE. When the norm of the residual map Q was below lo-’ the point 
was accepted as a zero point. The steplength used in the computation of DQ was 
m. The algorithm in [4] indicated, that 4. lo-’ was an optimal steplength. 
The reason may be, that the solution is very stable, i.e., all eigenvalues are close to 
zero. 
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FIG. 2. Strobed orbits of the bi-periodic steady state solutions of i + 0.052 + x + c.9 = 0.3 cos t + 
1.5 cos(O.115f) for different values of c. The x and i axes have different scales, whereas the T axis is 
T = r/T’ modulo 1, t = 0, 2n, 2’2n,..., 200’2n, and T’ = 271/0.115. 
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TABLE1 

Initial Conditions (x, I?) at I = 0 for B&periodic Orbits 

c x i 

0.0 1.5199 84759 91978 1 6.0010 18801 48837 8 
0.01 3.9109 25574 43250 I 1.5296 40281 25913 2 
0.05 2.8089 25069 83854 5 0.4044 34179 38561 66 
0.1 2.4496 99465 33074 2 0.0847 64578 43414 741 
0.5 0.8456 97528 20074 02 -0.0482 33694 28735 620 
1.0 1.2018 82039 60392 9 0.2822 35981 73299 29 

CONCLUSIONS 

Given a bi-periodically forced system. When such a system has a bi-periodic 
solution, we have described a method to determine it. The method assumes the 
ratio of the two periods T and T’ to be either irrational or rational with a long con- 
tinued fraction expansion. If the continued fraction expansion is short the solution 
is better studied as a periodic solution. We have examined a system of IMs where 
we could compare our method with the exact solution. We have also examined a 
system of ODES where other methods have been used earlier. In both cases with 
good results. 
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